
A Rule Based Verification with Strongly Typed
Field based SQL Injection and XSS Attack

Detection
Ajay Singh Dikhit [1], Prof.khushboo Karodia [2]

1PG Scholar, Department of Computer Science & Engineering
Shri Vaishnav Institute of Technology and Science, Indore (M.P), India

 2Professor, Department of Computer Science & Engineering
Shri Vaishnav Institute of Technology and Science, Indore (M.P), India

Abstract: Computing technologies and evolution of internet
reduces the effort required for various processes. Among them
the most benefitted industries are web based systems, banking,
marketing, e-commerce etc. This system mainly involves the
information exchanges continuously from one host to another.
During this transition there are so many places where the
confidentiality of the data and user gets loosed. Normally the
area where there is more probability of attack occurrence is
known as vulnerable zones. Web based system interaction is
one of such place where multiple users performs there task
according to the privileges assigned to them by the
administrator. Here the attacker makes the use of open areas
such as login or some other places from where the malicious
script is inserted into the system. This scripts aims towards
compromising the security constraints designed for the system.
Few of them related to users inserted scripts towards web
interactions are SQL injection and cross site scripting (XSS).
Such attacks have to be detected and removed before they
make an impact on the privacy and confidentiality of the data.
During the last few years various solutions have been
integrated to the system for making such security issues
resolved on time. Input validations is one of the well known
fields but suffers from the problem of performance drops and
limited matching. Some other mechanism such as sanitization
and tainting will generate high false report showing the
misclassified patterns. At the core, both involve string
evaluation and transformation analysis towards un-trusted
sources for completely interpreting the impact and depth of
the attack. This work proposes an improved rule based attack
detection with strongly typed text fields for effectively
detecting the malicious scripts. The work blocks the normal
access for malicious source using and robust rule matching
through centralized repository which regularly gets updated.
At the initial level of evaluation, the work seems to provide a
strong base for further research.

Keywords- : Web Security, SQL Injection, Cross Site Scripting
(XSS), False Report, Buffer Overflow, Input Validations, Rule
Based Attack Detection;

I. INTRODUCTION

Software vulnerability means the probability of error or
theft occurrence which might affect the normal operations
of the system. Mainly, it deals with the attackers
unauthorized interventions with the system. As the number
of software based system gets increased the vulnerability
graph is also rising with an abrupt pace. Additionally, as the

number of users gets exposed more to the open system like
internet, the chances of such attack will raises. Attacker can
start any attack sequence from the remote locations for
destroying the normal operations of the system. In most of
the cases vulnerabilities are caused by improper validation
of the data supplied by the user [1]. This undesired
condition is used by attackers to inject faults and malicious
code into the system that allows them to run their own code
and applications. For better understanding vulnerabilities
the creation of models that express the set conditions that
could lead or originate them is very helpful; additionally
when models are well understood they could also be used
for prevention. But since it is impossible to guarantee the
absence of vulnerabilities in a piece of code during its
creation, then it is necessary to have methods to detect them.

Mostly the attacks are probable to open environment
based web applications because it is next to impossible to
verify the authenticity of user and its operations both
simultaneously. There is a wide variety of web based users
activity verification techniques for securing such a
vulnerable access structure. Web applications enable much
of today’s online business including banking, shopping,
university admissions, email, social networking, and
various governmental activities [2]. They have become
ubiquitous because users only need a web browser and an
Internet connection to receive a system-independent
interface to some dynamically generated content. Figure 1
shows typical system architecture for web applications.
This three-tiered architecture consists of a web browser,
which functions as the user interface; a web application
server, which manages the business logic; and a database
server, which manages the persistent data.

FIGURE 1: SYSTEM ARCHITECTURE OF WEB APPLICATIONS

Result
Set

Database
Query

User
Input

Web
Pages

Application
Server

Database
Server Web Browser

Ajay Singh Dikhit et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1477-1482

www.ijcsit.com 1477

The web application server receives input in the form of
strings from both other tiers: user input from the browser
and result sets from the database server. It typically
incorporates some of this input into the output that it
provides to the other tiers, again in the form of strings:
queries to the database server, and HTML documents to the
browser, both of which get executed by their respective
tiers. The web application server constructs code
dynamically, so the code for the entire web application does
not exist in any one place at any one time for any one entity
to regulate. The flow of data among tiers gives rise to the
input validation problem for the web application server; it
must check and/or modify incoming strings before
processing them further or incorporating them into output
that it passes to other tiers to execute. Failure to check or
sanitize input appropriately can compromise the web
application’s security.

II. BACKGROUND

Models are a first approach to deal with vulnerabilities
and their understanding. A vulnerable software system can
be exploited by attackers and the system could be
compromised, the attacker might take control of the system
to damage it, to launch new attacks or obtain some
privileged information that he can use for his own benefit.
Considering this, it is important to know the different types
of vulnerabilities, their prevention and detection in order to
try to avoid their presence in the final software version of
the system and then reduce the possibility of attacks and
costly damages. Considering the vulnerabilities towards
making the web based system security is input validation.
The two most prominent classes of input validation errors
are cross-site scripting (XSS) and SQL injection. XSS and
SQL injection are the classes of vulnerabilities in which an
attacker causes the web application server to produce
HTML documents and database queries, respectively, that
the application programmer did not intend [3]. They are
possible because, in view of the low-level APIs described
above for communication with the browser and database,
the application constructs queries and HTML documents
via low-level string manipulation and treats un-trusted user
inputs as isolated lexical entities. This is especially
common in scripting languages such as PHP, which
generally do not provide more sophisticated APIs and use
strings as the default representation for data and code. Some
paths in the application code may incorporate user input
unmodified or unchecked into database queries or HTML
documents. The modifications/checks of user input on other
paths may not adequately constraint the input to function in
the generated query or HTML document as the application
programmer intended. In that sense, both XSS and SQL
injection are integrity violations in which low-integrity data
is used in a high-integrity channel; that is, the browser or
the database executes code from an un-trusted user, but
does so with the permissions of the application server.
However, both problems involve more than naive integrity
level or taintedness tracking because the output gets parsed
and interpreted rather than treated as an atomic value.

Typical uses of SQL injection leak confidential
information from a database, by-pass authentication logic,

or add unauthorized accounts to a database [4]. Although
XSS vulnerabilities are more prevalent than SQL injection
vulnerabilities, some XSS vulnerabilities cannot be
exploited in damaging ways, whereas most SQL injection
vulnerabilities can. Typical uses of XSS attacks leak
information, such as authentication credentials to a bank
website; exploit browser vulnerabilities and perhaps load
other malware onto users’ systems; or contribute to a social
engineering effort to trick users into revealing information,
such as passwords. Not only can a single XSS exploit do
the things listed above, but XSS vulnerability can be used
to create rapidly spreading malware, and thus compound
multiply the damage caused by a single exploit [5].

SQL Injection [6] is only one of the many types of
injection attacks which mainly occurs on database driven
websites. Here the attacker executes unauthorized SQL
commands by taking advantage of insecure code on a
system, bypassing even deeply nested firewall
environments. It causes:
 Bypass Authentication
 Discover Databases (Schemas, Users, Columns,

Values)
 Data Disclosure
 From the Database to the Network
Cross site scripting (XSS) [7] essentially applies code

injection attacks into the various interpreters in the browser
using HTML, JavaScript, VBScript, ActiveX, Flash and
other client-side languages. It is an attack on the privacy of
clients of a particular web site which involves 3 parties –
attacker, a client and the vulnerable website for stealing or
manipulating customer’s data It causes:
 Steal Authentication Information and Account

hijacking
 Changing of user settings
 Cookie theft/poisoning
 Denial of Service - Website Defacement do with
 Phishing (Pharming and Phear) – embedded links
 Identity Theft! (Impersonation)
Thus a major category of web abased attacks are

applied using the above two mechanism. Thus, it is very
essential to develop a defence mechanism against both.

III. LITERATURE SURVEY

During the last few years various modifications are
performed for improving web security mechanism. Among
them the related approaches to the SQL injection and cross
site scripting are taken here as a survey.

In the paper [8], an approach toward making the system
more robust against the SQL injection and cross site
scripting (XSS) detection is suggested. The paper says that
the affection vulnerabilities could be made reduced by
introducing the filtering approach. The detection filter
identifies the maliciousness in the entered text string. Even
though the attacker makes a slight changes in the string for
making it undetected from the filtering mechanism.
Evaluating the approach, it is found that a HashMap is able
to provide an easy to implement, a fast running time
sanitization function to detect encoded SQL injection and
XSS attack strings. A proof of concept is developed in PHP
and Java.

Ajay Singh Dikhit et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1477-1482

www.ijcsit.com 1478

The paper [9] presents cross site scripting detection and
removal approach. It also presents the comparison of the
current filtering and sanitization techniques. According to
that XSS sanitization can be difficult to get right as it ties in
closely with the parsing behavior of the browser. An
improvement over the sanitization correctness using parsing
behaviour of the web is also used as a filter for browser. A
system administrator may assign HTML filters based
authenticated user role as a control structures. However, the
administrator can create arbitrary HTML filter policies and
assign them to various roles. Thus, the administrator can
apply the full HTML filter to all users by default, but
explicitly allow trusted users to post comments with links in
HTML anchor tags.

The paper [10] presents a study on cross-site scripting
on web applications over the last few years. It focuses on
developing strong security primitives for web protection
against the unauthorized access of the protected content. It
also shows performance comparison of two mitigation
techniques for Cross-site Scripting (XSS) at the server side
based on the parameters like application’s platform,
middleware technology and browser used by the end user.
The paper had implemented Mitigation parsing technique
using database and replace technique in different platforms,
middleware and checked its performance. From all the
results obtained can clearly infer that a web application with
mitigation technique with REPLACE function implemented
in JAVA can give a good performance in browser
FIREFOX.

In the paper [11], a detailed survey and comparative is
presented on various kinds of SQL injection, XSS attacks
and approaches to detect and prevent them. Approaches to
detect SQL Injection for a web application can be protected
from attacks by taking into account two major things:
Detection algorithm and vulnerability analysis. All the
approaches however involve with a limited detection up to
some failures at some point. Any unified approach is still
not been developed because of its wide applicability.
Furthermore some of them even do not provide reasonable
security and can be easily bypassed by attackers. Also a few
of them are so complex it is almost impractical for a user to
use in real situations. The key finding of this paper is
analytical survey report on various types of SQL injection
and XSS attacks against different methods defined by
several authors.

In the paper [12], an automated testing approach,
namely µ4SQLi is suggested with its groundwork set of
conversion operators. It can generate the input sets which
make the systems working affected by executing the
systems malicious SQL statements. The paper specifically
focuses on the input vulnerabilities using SQLi service
under test. If it is used in any SQL statement of the
execution of a service and if, through this parameter, an
attacker can send malicious inputs that can change the
intended logic of the SQL statement. To develop such
vulnerabilities, the attacker has to provide inputs that result
in executable SQL instruction. Otherwise, the resulting
statements are discarded by the record, thus no access or
changes to the data are possible.

In a way to achieve its objective of dynamic attributes
based vulnerability detection the paper [13] uses supervised
learning. The work is a prediction models that are based on
classification and clustering in order to predict
vulnerabilities, working in the presence or absence of
labeled training data, respectively. In this experiment across
six applications, the new supervised vulnerability predictors
based on hybrid (static and dynamic) attributes achieved, on
average, 90% recall and 85% precision, that is a sharp
increase in recall when compared to static analysis-based
predictions. Here the attributes are based on hybrid static
and dynamic code analysis, which characterize input
validation and sanitization code patterns for predicting SQL
injection and XSS vulnerabilities. Dynamic analysis is used
to classify nodes that invoke user-defined or language built-
in string replacement/matching functions since
classification of such nodes by static analysis could be
imprecise.

The paper [14], proposes a lightweight approach to
prevent SQL Injection attacks, that it can actually be well
defended by using LINQ (Language Integrated Query).
LINQ to SQL, when used exclusively for data access,
eliminates the possibility of SQL injection in your
application for one simple reason: every SQL query that
LINQ executes on your behalf is parameterized. Internally,
it means that when LINQ to SQL queries the database,
instead of using plain values, it passes them as SQL
parameters, which means they can never be treated as
executable code by the database. The compiler catches a lot
of query misuse that might introduce functional defects or
other types of vulnerabilities into your application. In
contrast, SQL statements you write are parsed and
interpreted on the database only at runtime before you
know whether it is correct or not. The only attack vector
against LINQ to SQL is for an attacker to try to trick LINQ
into forming illegal or unintended SQL. Fortunately, the
languages and compilers are designed to protect you from
that.

The paper [15] covers certain issues and suggest there
solution for making the defence more robust against
dynamic SQL injection attack. Due to the inappropriate
programming practices a large room for SQL-injection
attack is left open which lure the hackers to steal
confidential information from the servers’ database. In
order to handle this vulnerability and detect it, enhancement
in the coding structure used for web application
development is required. It is used to dynamically mine the
programmer - intended query structure on any input, and to
detect attacks by comparing them against the intended
query structure. It generates attack on the website whose
URL is entered in the corresponding field. It follows a set
of patterns for generating the attack and detecting the
vulnerability.

IV. PROBLEM STATEMENT

After studying the various approaches related to the
defined attack prevention, detection and removal, some of
the definite are of work identified is covered here. Mainly
the focus with the defined area is to reduce the detection
load on performance measures and will increase the

Ajay Singh Dikhit et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1477-1482

www.ijcsit.com 1479

detection accuracy. It depends on the browsers also thus, it
needs to be taken care with other factors for a web
applications.
Problem (i) Existing sanitisation techniques will only
uses limited matching for SQL injection and XSS attacks.
There is no central repository holding the complete
verification for pattern inserted and will fully automate the
process. It causes false report for recent developing attack
scripts.
Problem (ii) Large character probability with inputs
will increase the probability of scripting attacks. Thus a
formal code development and inspection after the complete
code will work towards improvements. Always the input
must be applied with constraints with definite fields
especially with the password or user id texts.
There must be clear separation between the trusted user
input and untrusted user input. Thus, some mechanism will
work prior before inserting those codes to the system. A
focus should also be made towards making the cookies also
secure to interpret. Thus context sensitivity will work in this
direction. With this work the aim is towards reducing the
performance penalty for above detection approaches using
light weighted pattern matching operations.

V. WORK EMBODIED

After analysing the various related works towards
improving the SQL injection and cross site scripting (XSS)
attack detection, the objective of the work are given below.
(i) This work will suggest an automated input validation

in combination of other preventing measures for both
the attack. Mainly the directions are leading towards
sanitization and taint analysis based detection in a
combination or hybrid way.

(ii) Work will present a brief study on above mentioned
types of attack so as to completely analyze the

remaining problems in defense mechanism
development.

(iii) The direction of work will also include a visualization
mechanism for vulnerability analysis.

(iv) Evaluation of above suggested approach with a
futuristic development to make the logical views on
strong code base background.

VI. PROPOSED WORK

In today world the web application is changing very
rapidly with the use of internet based application and
services. This includes the computation process with the
secure transition of the user’s data. Controlling the
operation of computation and other web operation are based
on three tier architecture. In this the initial request is made
by the end user who processes and forwarded to the
application server from where it reaches the original
location where the data resides. The data is then reverting
back with the request to the source address. During this
various types of information theft possibilities are probable
on such system. But there is various security mechanisms
are developed during the last few years to make the process
overall secure. Unauthorized theft of the information comes
under the category of the attack. With evolutionary growth
of internet based web application the types and variety of
the theft occurrence and areas are also increased. Thus to
make a robust and overall mechanism for complete security
is not practically feasible. Among the traditional security
mechanism for web mostly are handled by the web service
providers. But still the users controlled information flow is
an open area of attack fabrications and insertions. SQL
injection and Cross site scripting is the most vulnerable
category which is planted by the users text field using an
executable queries.

System Architecture

Error RedirectionWeb Application

NoNo

Output

Rule Based Attack Detector

Centralized
Repository

Matcher

Rule Base Cross Site Scripting (XSS)
XR1: Check long UTF codes (8 and 16)
XR2: Sanitize Unicode Sequences
XR3: Recheck Hex Coding
XR4: Deny Active Scripts
XR5: Use TextTag instead of HTML Tag
Inside Text Fields

Rule Base SQL Injection
SR1: Check against Input Validation (Length, Type,
Pattern, Rule)
SR2: Encoded Inputs (Character Encoding must be
Fixed and Limited)
SR3: Single Quote with Double Quote Replacement
SR4: Avoid Dynamic SQL Input Queries and Escape
Sequence
SR5: Remove Unused Stored Procedures
SR6: Enable Request Validations

YesYes Vulnerability
Code

User’s
Web Input

Special
Character

Script Analyzer &
Token Breaker

Mapper

Parser

Verifier

FIGURE 2: A RULE BASED ATTACK DETECTION APPROACH TOWARDS THE SQL INJECTION AND XSS ATTACK

Ajay Singh Dikhit et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1477-1482

www.ijcsit.com 1480

Thus work proposes an improved mechanism using

rule based verification with strongly typed text field based
SQL injection and XSS attack detection for web browsers.
The system performs its operation based on four major
components or functionalities:

(i) Script Collector: It is used for collection of script
from the various input source of the web. Mainly
it handles the character matching for any
susceptible codes containing special symbol. It
detects whether the symbol inserted is intentional
or mistaken and redirects it accordingly.

(ii) Vulnerable Script Pattern Detection: It performs
the task of vulnerable script analysis. It can be
segregated into mapping, parsing, verifying from
central repository.

(iii) Rule Base for SQL Injection: It contains the
rules and definition of newly introduced attacks.

(iv) Rule Base for XSS Attack: It contains the rules
and definition of newly introduced attacks.

Web application always suffers with the recent attack
vulnerability of SQL injection and cross site scripting
(XSS). Both the category of attack contains the broader
view of user input based text validations because from this
instance the system gets affected easily. The process starts
with the user gets the system input into the system. It is the
open area where if the constraints are not applied then the
user is free to apply any type of text into the insertion fields.
Here the script can also be passed which could work as a
malicious code.

This script based text contains different symbols from
which various data orientated things can be accessed
maliciously from the web database. Here the system gets a
specified special character matching system. This makes the
uneven and unidentifiable script and bock the access. If the
string is generic then its gets permitted for web application
access. If the attacker have modified the string other than
the constrained applied with the system or if the normal
user insert the same query formally then a further check is
made with the vulnerable code detection module working
with the browser.

If vulnerability is not found than the user gets
permitted to access the web normally. Otherwise the rule
based attack detection starts operating. This rule based
attack detection contains the script analyser and token
breaker module. Here the script is broken into various token
which is analysed by the later functionality. Verification
system is embossed with three operations: Mapper, Parser
and Verifier. All this works collectively for making a
complete breaking and analysis of the inserted script. This
script after breaking is matched with the central repository
of older attack and recently identified attack sequences.
This central repository is regularly updated with new
definitions and scripts. And if the script contains a portion
of the vulnerable string then also it blocks the request.
Repository contains the rules from which matching is
applied.

The request which violates the rules will be considered
as a SQL injected and XSS attack. In this way the system
detects the attack as a pattern. If some new attack is
detected then also the system gets defined with the new rule
easily. The system is easy to use and occupy fewer
resources.

APPLICATION AREA

(i) Dynamic web security
(ii) Web services monitoring
(iii) Web performance logger
(iv) Cloud based web computing
(v) Blogging
(vi) Social networking
(vii) Transaction Systems
(viii) Online services marketing

VII. EVALUATION PARAMETERS

With this work the aim is to perform binary
classification to predict vulnerable files. A binary classifier
can make two possible errors: false positives (FP) and false
negatives (FN). A FP is the classification of a neutral file as
a vulnerable file, and a FN is the classification of a
vulnerable file as neutral. A correctly classified vulnerable
file is a true positive (TP), and a correctly classified neutral
file is a true negative (TN). A FP may cause a team to do
additional testing or inspection of a file only to find no
vulnerabilities. A FN may allow a vulnerability to escape to
the field after release. For evaluating binary classification
models, the work uses recall, precision, inspection rate, and
vulnerability rate.
 Recall (R) is defined as the percentage of vulnerable

files found: R=TP*100/(TP+FN).
 Precision (P) is defined as the percentage of

correctly predicted vulnerable files:
P=TP*100/(TP+FP).

 Inspection rate (IR) is the percentage of files that
were classified as vulnerable:

IR=(TP+FP)*100/(TP+TN+FP+FN).
 Vulnerability rate (VR) is the percentage of the

number of vulnerabilities that were included in the
files classified as vulnerable:

VR = (No. of Vuln. in the files classified as
vulnerable)*100 / (Total No. of vulnerabilities).

The inspection rate represents the percentage of files
required for inspection or testing to achieve the reported
recall. Note that VR is similar to recall, but differs where
recall counts the number of vulnerable files, VR counts the
number of vulnerabilities in each file that was classified as
vulnerable.

III.CONCLUSION

Web application development and usages are increased
very drastically due to their availability and trust over the
system which could be remotely measured. This trust and
usages are increase because of their high security and
reduced load. But during the last decade this online
applications gets affected with SQL injection and cross site
scripting (XSS) attacks. This is because the data oriented

Ajay Singh Dikhit et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1477-1482

www.ijcsit.com 1481

web applications host the user’s data and somewhere it
interacts with the text based user fields and commands. This
open area is used by the malicious user to get into the
system using the above defined attack sequences.
Traditional approaches which are working towards
detection are consuming heavy system load. This paper
works towards improving the traditional attack detection
mechanism with improved accuracy and reduced
computation load. The detection and attack mitigation is
completely automated with the suggested rule based attack
detection having strongly typed fields for preventing the
malicious script to be inserted into the system. Analytical
evaluations and future direction of the work will prove the
same with a implemented system.

ACKNOWLEDGMENT
The authors wish to thanks Dr.Anand Rajavat and
Dr.Rajeev Vishwakarma for their support in this work.

REFERENCES

[1] Nenad Jovanovic, Christopher Kruegel and Engin Kirda, “Precise
Alias Analysis for Static Detection of Web Application
Vulnerabilities”, in ACM PLAS, DOI: 1-59593-374-3/06/0006,
2006.

[2] Elizabeth Fong, Romain Gaucher, Vadim Okun and Paul E. Black,
“Building a Test Suite for Web Application Scanners”, in National
Institute of Standards and Technology, 2008.

[3] Etienne Janot and Pavol Zavarsky, “Preventing SQL Injections in
Online Applications: Study, Recommendations and Java Solution
Prototype Based on the SQL DOM”, in OWASP Security
Conference, Belgium, 2008.

[4] Yonghee Shin, Laurie Williams, “Toward A Taxonomy of
Techniques to Detect Cross-site Scripting and SQL Injection
Vulnerabilities”, in North Carolina State University, Raleigh, 2008

[5] Michael Martin and Monica S. Lam, “Automatic Generation of
XSS and SQL Injection Attacks with Goal-Directed Model
Checking”, in USENIX Security Symposium, 2008.

[6] Mattia Monga, Roberto Paleari and Emanuele Passerini, “A hybrid
analysis framework for detecting web application Vulnerabilities”,
in University degli Studidi, Milano, Italy, 2009

[7] Raymond Mui and Phyllis Frankl, “Preventing SQL Injection
through Automatic Query Sanitization with ASSIST”,
doi:10.4204/EPTCS.35.3, 2010

[8] Erwin Adi and Irene Salomo, “Detect and Sanitise Encoded Cross-
Site Scripting and SQL Injection Attack Strings Using a Hash
Map”, in Proceedings of the 8th Australian Information Security
Management Conference, Edith Cowan University Research
Online, 2010

[9] Joel Weinberger, Prateek Saxena, Devdatta Akhawe, Matthew
Finifter, Richard Shin and Dawn Song, “An Empirical Analysis of
XSS Sanitization in Web Application Frameworks”, University of
California, Berkeley, 2011

[10] Ravi Kanth Kotha, Gaurav Prasad and Dinesh Naik, “Analysis of
XSS attack Mitigation techniques based on Platforms and
Browsers”, in Department of Information Technology, National
Institute of Technology, Karnataka, DOI : 10.5121/csit.2012.2240,
2012

[11] Abhishek Kumar Baranwal, “Approaches to detect SQL injection
and XSS in web applications”, Term Survey Paper in Masters of
Software Systems, University of British Columbia, 2012

[12] Dennis Appelt, Cu Duy Nguyen, Nadia Alshahwan and Lionel C.
Briand, “Automated Testing for SQL Injection Vulnerabilities: An
Input Mutation Approach”, in ACM, DOI:978-1-4503-2645-
2/14/07, 2014

[13] Lwin Khin Shar, Lionel C. Briand and Hee Beng Kuan Tan,
“Mining SQL Injection and Cross Site Scripting Vulnerabilities
using Hybrid Program Analysis”, in ICSE 2013, IEEE, DOI: 978-1-
4673-3076-3/13, 2013

[14] V. Vilasini and P. Chellamal, “Eliminate Sql Injection Using
LINQ”, in IJARCST, ISSN : 2347 - 8446 (Online), Vol:2, Issue:1,
2014

[15] Praveen Kumar, Himanshu Kumar and Remya Joseph, “Sql-
Injection Tool for finding the Vulnerability and Automatic Creation
of Attacks on JSP”, in IJARCET, ISSN: 2278 – 1323, 2012

Ajay Singh Dikhit et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1477-1482

www.ijcsit.com 1482

